

PVMET-150
User's Guide

Date: 4/14/14 Revision: 3

Copyright© 2014 by RainWise, Inc.

All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved.

PVMETTM is a trademark of RainWise, Inc.

INTRODUCTION	5
UNPACKING THE SYSTEM	5
INSTALLING THE WEATHER STATION	5
SITE REQUIREMENTS AND CONSIDERATIONS	5
INSTALLATION	
Weather Station	
Integrated Irradiance Sensor	
PV Temperature Sensors	
WIRING	
Connecting External PV Cell Temperature Sensors	8
Connecting External and Integrated Pyranometer Sensors	
Connecting RS-485	9
Connecting the Power Supply	9
SUNSPEC AND MODBUS	10
Serial/General	10
REGISTER MAP:	10
Registers start at holding register 40,001	10
Changing the Modbus Device Address	
Setting the Pyranometer Calibration Constant	
COMMAND MODE:	13
COMMAND SET	13
Get Column Headers: HEADER	
Get Current Data: NOW	
Auto Output: AUTO	
Software Reboot: REBOOT	
Version Information: VERSION	
Modbus Device Address: MBID	15
Serial Number: SERIAL	15
Command Mode: EXIT	15
Calculating the Checksum:	16
SOFTWARE/FIRMWARE UPDATES	18
MINIMUM SYSTEM REQUIREMENTS	18
RS-485/422	18
Software	
MATERIAL SPECIFICATIONS	19
Enclosure:	19
Pyranometer Sensor:	
Ambient Air Temperature Sensor:	
PV Panel Temperature Sensors:	
Electronics:	
Physical:	

HARDWARE SPECIFICATIONS	20
COMMON SPECIFICATIONS	20
PYRANOMETER SENSORS	
AMBIENT AIR TEMPERATURE SENSOR:	20
PV PANEL TEMPERATURE SENSORS:	20
RS-485/422 SERIAL SPECIFICATIONS	20
CONTACT INFORMATION	21
WARRANTY	21

Introduction

The PVMET - 150 weather station is a compact and economical solution for photovoltaic installations. It is capable of measuring ambient air temperature, two PV panel temperatures, and two pyranometers. The station was specifically designed to measure second-class, first-class, or secondary-standard pyranometers in a global and plane-of-array configuration. The PVMET - 150 is Sunspec compliant and uses a 2-wire half duplex serial port for Modbus communication to a host.

Unpacking the System

When unpacking the system the following components should be located.

A1200 – PVMET -150 Sensor Assembly

A2101 – PV Cell Temperature Sensor

A1030 – Sensor Assembly Mounting Mast

PVMET -150 User's Guide

If the system was ordered with any accessory, it should be located while unpacking the system. The available accessories for the PVMET -150 are listed below.

<u>A2101</u> – PV Cell Temperature Sensor <u>A202X</u> – Pyranometer Sensor, The number "X" is dependent on model of pyranometer.

<u>A203X</u> - Integrated Pyranometer Mount, The number "X" is dependent on model of pyranometer.

A3000 - Mono-Mount

A3010 – Tripod Galvanized Steel

A3020 - Flat Roof Mount

If any of the components are missing, RainWise Inc. should be contacted.

Installing the Weather Station

It is suggested that you operate your system at ground level and make sure that all components operate properly prior to installation.

If any of the components are damaged or malfunctioning upon receipt, RainWise should be contacted.

Site Requirements and Considerations

Ambient air temperature and irradiance can be affected by obstructions and local topography. Each site is different and presents challenges in its own unique way. Any object, in excess of 10 degrees above the plane of the irradiance sensor, must not block the sensor. The PVMET -150 sensor assembly, which contains the ambient air

temperature, should be no closer than 4 times any obstruction's height and should be placed away from any dark, heat-absorbing surfaces.

When roof-mounting the sensor assembly, the unit should be mounted toward an edge of the roof preferably on the prevailing wind side of the building and should be at least 2 1/2 feet above the roofline. Avoid locating the station near any heat sources such as chimneys or vents.

Installation

Weather Station

Mount the support mast securely. This may be done by using the Mono-Mount, Tripod, or Flat-Roof-Mount, which are sold as an accessory to the PVMET - 150. The mast may also be attached to a support structure using U-Bolts. Do not tighten the support structure to the PVMET -150 unit; it will need to be first oriented to the correct direction.

Rotate the assembled unit until the electronics enclosure faces TRUE SOUTH or TRUE NORTH if you are in the northern or southern hemisphere, respectively. Secure the support mast to the assembly. Rotation is prevented by lining up the two holes in each mast.

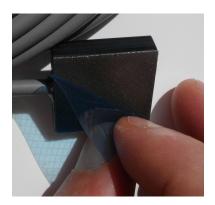
Integrated Irradiance Sensor

When the PVMET -150 is ordered with a pyranometer and integrated pyranometer mount it will pre-installed on the unit. The pyranometer mount allows for the measurement of global or plane of array irradiance. To accurately measure this quantity, the sensor must be adjusted to the appropriate angle. This is done by using a 5/32" or 4mm Allen wrench to loosen the adjustable mounting bracket to the same angle as the solar panel array. For global irradiance measurements, the sensor should be fixed in a horizontal position.

PV Temperature Sensors

This sensor is designed to attach directly to any solar panel. When placed on the center of the back of the panel, it accurately measures the temperature of the panel.

Prior to installation of the PV temperature sensor onto the PV panel, the installation area of the panel back should be thoroughly cleaned. This cleaning will ensure a good bond between sensor and panel and allow for accurate panel temperature readings.



After cleaning, peel off the protective adhesive tape on the temperature sensor and stick it onto the panel. Firmly press the sensor into place. Refer to the picture on the next page.

The cable should be secured within 8 inches of the temperature-sensing element.

Run the cable back to the PVMET -150 unit and connect to the PV temperature sensor terminals.

If the cable length of 25ft is insufficient for the installation, additional cable can be added to the existing cable. If this is done, an accuracy-derating factor must be added to the overall temperature accuracy of this sensor. For every 100ft of cable added, a derating factor of -0.125°C must be taken into account.

Wiring

To enter the enclosure with a cable, the lid must first be removed. Remove the four Philips head screws from the back of the enclosure. Once the lid is removed, the circuit board is exposed. The inside of the enclosure will appear as below.

When replacing the cover, make sure that all installed cables are pinched by the black foam on the bottom of the enclosure. This will enable a weather tight seal.

Connecting External PV Cell Temperature Sensors

The PV cell temperature sensors are not polarity sensitive. Therefore, each signal wire is interchangeable. The sensor comes with a 25ft length of cable. An additional PV cell temperature sensor is sold as an accessory and can be installed into the unit if needed.

PV Cell Temperature Terminals

PV Temp #1: Signal PV Temp #1: Signal

PV Temp #1 Shield: Cable Shield and Drain

Additional PV Cell Temperature Terminals

PV Temp #2: Signal PV Temp #2: Signal

PV Temp #2 Shield: Cable Shield and Drain

Connecting External and Integrated Pyranometer Sensors

When the PVMET-150 is ordered with an integrated pyranometer it will come preinstalled in the Pyranometer #1 connector.

An additional pyranometer can be integrated into the unit. This is an accessory to the PVMET-150. The use of two pyranometers creates a complete solution for solar monitor. This configuration enables the capture of both global and plane of array irradiance.

Integrated Pyranometer Terminals

Pyranometer #1: Signal Positive GND: Signal Negative

Shield: Cable Shield and Drain

Additional Pyranometer Terminals

Pyranometer #2: Signal Positive GND: Signal Negative

Shield: Cable Shield and Drain

If a pyranometer is used that is not factory installed, a sensor specific sensitivity constant must be saved to the PVMET-150. This sensitivity constant is issued by the manufacture of the pyranometer and are typical in units of μ V/W/m². For more information see "Setting the Sensitivity Constant for Pyranometers".

Connecting RS-485

The PVMET-150 is supplied with a half duplex RS-485/422 serial port. The default firmware build supports RS-422 only. Custom firmware builds are addressable and support integration into RS-485 networks. Contact RainWise for further information.

Wiring connections are made using the 4-pin screw terminal inside the PVMET-150 electronics enclosure. Cable is not supplied with the unit. The RS-485/422 lines are terminated with a 120-ohm resistor. This can be disabled by moving the termination jumper, located inside the unit, to the OFF position. This requires removing the enclosure cover. To do this, remove the 4 screws on the back side of the unit.

RS-485/422 Terminals

A (-): Negative RS-485 B (+): Positive RS-485 GND: Signal Ground

Shield: Cable Shield and Drain

RS-485 is rated to 4,000 feet (1,200m) at 90 kbps. The RS-485 port on the PVMET-150 is surge protected but not isolated.

Connecting the Power Supply

The power supply is nominally rated for 24VDC but can accept a voltage in the range of 10 to 30VDC. The inputs are reverse polarity, surge, overvoltage and over current protected. The power supply is not isolated.

Power Supply Terminals

Earth GND: Earth or Chassis Ground GND: Negative Supply Voltage 24VDC: Positive Supply Voltage

SunSpec and Modbus

The PVMET-150 follows the SunSpec standard. Refer to the official SunSpec specifications for application information. The full register map is listed below. The PVMET-150 has the following default communication settings:

Serial/ General

Baud Rate 9600 Parity None Stop Bits 1

RS-232

Flow control None

RS-485

2-Wire Half Duplex

<u>Modbus</u>

Device ID 60

Register Map:

Registers start at holding register 40,001

_						Scale		
Start	End	#	Name	Туре	Units	Factor	Contents	Description
0001	0002	2	C_SunSpec_ID	uint32	N/A	N/A	"SunS"	Well-known value. Uniquely identifies this as a SunSpec Modbus Map
0003	0003	1	C_SunSpec_DID	uint16	N/A	N/A	0x0001	Well-known value. Uniquely identifies this as a SunSpec Common Model block
0004	0004	1	C_SunSpec_Length	uint16	registers	N/A	65	Length of common model block
0005	0020	16	C-Manufacturer	String(32)	N/A	N/A	"Rainwise_Inc"	Well-known value
0021	0036	16	C-Model	String(32)	N/A	N/A	"PVmet-150"	Manuf specific value
0037	0044	8	C-Options	String(16)	N/A	N/A	"0"	Manuf specific value
0045	0052	8	C-Version	String(16)	N/A	N/A	"1"	Manuf specific value
0053	0068	16	C_Serial Number	String(32)	N/A	N/A	"Serial"	Manuf specific value
0069	0069	1	C_DeviceAddress	unint16	N/A	N/A	60	Modbus Id
0070	0070	1	C_SunSpec_DID	int16	N/A	N/A	307	Start of next Device
0071	0071	1	C_SunSpec_Length	int16	N/A	N/A	11	Device Model Block Size
0072	0072	1	E_BaseMet_Air Temperature	int16	°C	-1	Measured	Ambient Air Temperature
0073	0073	1	E_BaseMet_Relative Humidity	int16	%	0	N/A	Relative Humidity
0074	0074	1	E_BaseMet_Barometric _Pressure		Нра	0		Barometric Pressure
0075	0075	1	E_BaseMet_Wind_Spee d		m/s	0		Wind Speed
0076	0076	1	E_BaseMet_Wind_Direction	int16	Degrees	0	N/A	Wind Direction

0077	0077	1	E_BaseMet_Rain	int16	Inches		0	N/A	Rainfall	
0078	0078	1	E_BaseMet_Snow	int16	Inches		0	N/A	Snowfall since last poll	
0079	0079	1	E_BaseMet_PPT_Type	int16	Inches	N/A		N/A	Precipitation Type (WMO 4680 SYNOP code reference)	
0800	0800	1	E_BaseMet_Electric_Fie	int16	V/m		0	N/A	Electric Field	
0081	0081	1	E_BaseMet_Surface_W etness	int16	kOhms		0	N/A	Surface Wetness	
0082	0082	1	E_BaseMet_Soil_Moistu re	int16	%		0	N/A	Soil Moisture	
0083	0083	1	C_SunSpec_DID	int16	N/A		0	302	Well-known value. Uniquely identifies this as a SunSpec Irradiance Model	
0084	0084	1	C_Sunspec_Length	int16	N/A		0	5	Variable length model block =(5*n), where n=number of sensors blocks	
0085	0085	1	E_Irradiance_Global_H orizontal 1	uint16	W/m²		0	Measured	Global Horizontal Irradiance	
0086	0086	1	E_Irradiance_Plane-of- Array 1	uint16	W/m²		0	N/A	Plane-of-Array Irradiance	
0087	0087	1	E_Irradiance_Diffuse_1	uint16	W/m²		0	N/A	Diffuse Irradiance	
0088	8800	1	E_Irradiance_Direct_1	uint16	W/m²		0	N/A	Direct Irradiance	
0089	0089	1	E_Irradiance_Other_1	uint16	W/m²		0	N/A	Some other type Irradiance	
0090	0090	1	C_SunSpec_DID	int16	N/A		0	303	Well-known value. Uniquely identifies this as a SunSpec Back of Module Temperature Model	
0091	0091	1	C_Sunspec_Length	int16	N/A		0	2	Variable length model block =(5*n), where n=number of sensors blocks	
0092	0092	1	E_BOM_Temp_1	int16	.C		-1	Measured	Back of module temperature	
0093	0093	1	E_BOM_Temp_2	int16	°C		-1	Measured	Back of module temperature	
0094	0094	1	EndOfSunspecBlock	uint16	N/A	N/A		0xFFFF	End of SunSpec Block	
0095	0095	1	C_Sunspec_Length	uint16	N/A		0	0	Terminate length, zero	
0200	0200	1	Modbus Id - Write Register	int16	N/A	N/A		60	Modbus device address, write register	
0201	0201	1	Lock Byte (not used)	int16	N/A	N/A		0	Not Used	
0202	0202	1	Sensitivity Constant 1	uint16	uV/M^2	-2		X	Factory programmed irradiance constant for sensor 1	
0203	0203	1	Sensitivity Constant 2	unit16	uV/M^2	-2		Х	Factory programmed irradiance constant for sensor 2	

Changing the Modbus Device Address

The Modbus device can be changed using either the MBID command or directly through Modbus. Refer to the Command Mode instructions to set the address using the command mode.

Modbus register 40200 contains the unsigned 16-bit address. Writing to this register will update the device's Modbus address. The write request will be acknowledged but will change immediately after the response has been issued. The valid address range is 1

through 255. Write requests outside this range will not update the address. The address is stored in flash memory and will remain in affect permanently or until it is changed again.

In order to use the Modbus method to change a device address you must know the current device address. If you do not know the address and cannot scan for it, you will have to use the Command Mode. The command mode requires a PC and does not require an address. It can only be used with a point-to-point RS-485 connection.

Setting the Pyranometer Calibration Constant

Each pyranometer has a specific sensitivity calibration constant that is provided by the sensor's manufacturer. The PVmet-150 must be set to match this value. If your station was purchased with an integrated sensor, the appropriate calibration constants have been preprogrammed at the factory. You may need to adjust these constants if you replace or recalibrate the sensors.

The $\mu V/W/m^2$ constants for each sensor should be written to Modbus holding registers 40202 & 40203 respectively. The sensitivity number provided by the sensor manufacturer should be between 5.00 and 40.00 $\mu V/W/m^2$. This number should be multiplied by 100 and written to the appropriate register as a 16-bit unsigned integer. A sensitivity of say 12.56 would be written as 1256. Once written, the setting will be saved to flash memory and will remain in affect until overwritten. The value will not be lost if power is removed from the station.

Command Mode:

By default, the PVMET -150 will boot in Modbus mode and will not respond to the commands listed here. To enter the command mode issue three '+' characters one second apart. The PVMET -150 will return a message indicating that it is in command mode. After one minute of inactivity it will exit command mode and return to the default Modbus mode.

Commands must be terminated with a **<**CR**>** character. Responses begin and end with a **<**CR**>**<LF**>**.

If the command syntax or parameters are incorrect the device will respond with **ERROR**. If the command is accepted, the device will respond with **OK**. Commands may not be chained together. Commands are not case sensitive.

Command Set

Get Column Headers: HEADER

Description: Returns a series of comma-delimited text descriptions. These descriptions are used to identify the type and order of the returned data in both **NOW** and **DOWNLOAD** commands.

Values: None Syntax: HEADER

Sample Response:

HDR,"AIR TEMP","PV TEMP1","PV TEMP2","SOLAR","CHIP_TEMP",!213

Key:

HDR : Identifier, HDR= Header, MSG= Message, REC=

Data Record, MAX= Maximums and MIN= Minimums.

AIR TEMPT : Current ambient air temperature.

PV TEMP1 : First current Back-of-Module temperature.
PV TEMP2 : Second current Back-of-Module temperature.

SOLAR : Current global horizontal irradiance.

CHIP TEMP : CPU temperature.

!XXXX : CRC-16 Checksum. See Calculating the

Checksum.

NOTE: The parameter count may increase in future models.

Get Current Data: NOW

Description: Returns the current values in a comma-delimited format. The order of the data values correspond to the output of the HEADER command. **NO DATA** is returned if the unit has not received a transmission from the weather station.

Values: None Syntax: NOW

Sample Response:

22.5,-40.0,-40.0,0, 29.3,!168

Auto Output: AUTO

Description: Automatically outputs current data every second. This is equivalent to issuing the NOW command every second. This mode will exit upon reception of any character. If no data is received from the weather station, the units will not output.

Values: None Syntax: AUTO

Sample Response:

OK

Software Reboot: REBOOT

Description: Forces a soft reboot of the interface. On boot up the version

information is output.

Values: None

Syntax: REBOOT

Sample Response:

None

Version Information: VERSION

Description: Returns firmware version information.

Values: None

Syntax: VERSION

Sample Response:

Rainwise Inc PVMET-150 Version: 1.0 Build 001 Jun 17

Modbus Device Address: MBID

Description: The Modbus device address can be viewed or changed using this

command. The default is address is 60

Values: ?,1 - 255

Syntax (Read): MBID=?
Syntax (Write): MBID=60

Sample Read Response:

60

Sample Write Response:

OK

Serial Number: SERIAL

Description: The serial number of the device can be viewed or changed using this command. The serial number string is returned in SunSpec Common block.

Values: ?, character string (31 character limit)

Syntax (Read): SERIAL=?

Syntax (Write): SERIAL=ABC123

Sample Read Response:

ABC123

Sample Write Response:

OK

Command Mode: EXIT

Description: Exits from the command mode. Modbus is not functional in

command mode.

Values: None

Syntax: EXIT

Sample Response:

Exiting Command Mode...

Calculating the Checksum:

The PVMET -150 uses a 16 CRC checksum. The CRC uses the same polynomial as the one used in Xmodem transfers (XMODEM-CRC).

The Polynomial is as follows:

$$x^{16} + x^{12} + x^5 + 1$$

The CRC calculation starts at the first ASCII character of the response. Leading carriage return line feeds are not included. All characters are included in the calculation up until but not including the exclamation character. The checksum is represented as a hexadecimal number.

The following C example code can be used to calculate the checksum:

```
/* Global Variables */
unsigned short int acc;
void
crc16Init(void)
 acc= 0;
crc16Add( unsigned short int _data )
  unsigned char n;
  for (n=8; n;n--)
   if ((acc & 0x8000)>0)
     acc<<= 1;
     _data<<= 1;
     if ((_data & 256)!=0)
     acc^= 0x1021;
       acc<<= 1;
       _data<<= 1;
if ((_data & 256)!=0)
acc++;
```

- 17 -

Software/Firmware Updates

The software or firmware in the PVMET -150 can be updated or changed using the RS-485 port. Make sure to read the update instructions carefully and be sure you are installing the correct software. As with all updates, there are risks associated with changing the flash memory.

Updates are loaded using a Windows based program called IAPflash. This program is supplied with the ".enc" file along with instructions. Windows is required to perform updates. No other operating systems are currently supported.

Minimum System Requirements

The PVMET -150 is equipped with an RS-485 serial port.

RS-485/422

Baud rate: 9600 bps Parity: None Data bits: 8 Stop bits: 1

Interface mode: 2-wire half duplex

Software

The PVMET -150 is designed to work with an RS-485 Sunspec compliant host. A terminal emulator program is required to change settings.

Material Specifications

Sensor Assembly:

RoHS Compliant

Mast: Anodized Aluminum

Heat Shields: Acrylonitrile Butadiene Styrene

Insolation Senors Bracket: Anodized Aluminum

Hardware: Stainless Steel and Nylon Locknut

Enclosure:

RoHS Compliant

IP65 Rated Outdoor Enclosures

UL 94 V-2

Body: Polycarbonate

Pyranometer Sensor:

RoHS Exempt

Body: Anodized Aluminum Cable: Santoprene Jacket

Ambient Air Temperature Sensor:

RoHS Compliant

PV Panel Temperature Sensors:

RoHS Compliant

Body: Anodized Aluminum

Adhesive Tape: Acrylic, Titanium Diboride, and Aluminum

Cable: Polyvinyl Chloride Jacket

Electronics:

RoHS Compliant

Physical:

Packaged Weight: 10 lbs.

Packaged Dimensions: 29" x 14" x 8"

Hardware Specifications

Common Specifications

Power Requirements: $10 \sim 30 \text{VDC}$ at 50 mAOperational Temperature: $-40 \sim 60 ^{\circ}\text{C}$ (-40 ~ 140 °F) Humidity: 0-100% Condensing

Pyranometer Sensors

The PVMET -150 is compatible with thermopile-based pyranometers. Please contact RainWise if you have a specific pyranometer manufacture you would like to use. As an example of compatible sensors, Kipp & Zonen pyranometers are listed below with their specifications.

Pyranometer Sensor	СМР 3	CMP 6	CMP 11	CMP 21	CMP 22
ISO 9060:1990 Classification	Second Class	First Class	,	Secondary Standard	Secondary Standard
Spectral Range	285 ~ 2800 nm	200 ~ 3600 nm			
Maximum Irradiance	2000 W/m ²	2000 W/m ²	4000 W/m ²	4000 W/m ²	4000 W/m ²
Response Time to 95%	< 18 s	< 18 s	< 5 s	< 5 s	< 5 s
Response Time to 63%	< 6 s	< 6 s	< 1.7 s	< 1.7 s	< 1.7 s
Non-Linearity (0 ~ 1000 W/m²)	< 1 %	< 1 %	< 0.2 %	< 0.2 %	< 0.2 %
Non-Stability (Change/Yr)	< 1 %	< 1 %	< 0.5 %	< 0.5 %	< 0.5 %
Directional Error (Up to 80° with 1000 W/m² beam)	< 20 W/m ²	< 20 W/m ²	< 10 W/m ²	< 10 W/m ²	< 5 W/m ²
Temperature Dependency of Sensitivity	< 5 % (-10 ~ 40℃)	< 4 % (-10 ~ 40℃)	< 1 % (-10 ~ 40℃)	< 1 % (-20 ~ 50 °C)	< 0.5 % (-20 ~ 50 ℃)
Tilt Error (at 1000 W/m²)	< 1 %	< 1 %	< 0.2 %	< 0.2 %	< 0.2 %
Temperature Range	-40 ~ 80°C	-40 ~ 80℃	-40 ~ 80℃	-40 ~ 80℃	-40 ~ 80°C

Ambient Air Temperature Sensor:

Range: $-40 \sim 80^{\circ}\text{C} (-40 \sim 176^{\circ}\text{F})$

Accuracy: ± 0.3 °C (0.54°F)

Thermal Time Constant 30 s

PV Panel Temperature Sensors:

Range: $-40 \sim 80^{\circ}\text{C}(-40 \sim 176^{\circ}\text{F})$

Accuracy: $\pm 0.3^{\circ}\text{C} (0.54^{\circ}\text{F})$

Thermal Time Constant: 270 s

Cable Length 7.62m (25 ft)

RS-485/422 Serial Specifications

Mode: 2-wire half duplex

Connector: 4-position screw terminal, (A,B, signal and earth ground)

Max Speed: 9600 bps Max. Modbus Poll Rate: 100 ms

Termination: 120 ohms (internal jumper enable)

Contact Information

RainWise Inc. 18 River Field Rd Trenton, ME 04609 USA

Phone: (207)-288-5169

Warranty

RainWise, Inc. warrants RainWise, Inc. manufactured PVMET products against defects in materials and/or workmanship for a period of two years from the date of purchase and agrees to repair or replace any defective product without charge. Equipment supplied by RainWise but not manufactured by RainWise is covered by the particular warranty of that manufacturer.

IMPORTANT: This warranty does not cover damages resulting from accident, misuse or abuse, lack of reasonable care, the fixing of any attachment not provided with the product or damage due to a lightning strike. RainWise, Inc. will not reimburse for take-down or installation charges. RainWise, Inc. will not pay for warranty service performed by a non-authorized repair service and will not reimburse the consumer for damage resulting from warranty service performed by a non-authorized repair service. No responsibility is assumed for any special, incidental or consequential damages.

To return a unit under this warranty, call (800)762-5723 within the continental US or (207)288-5169. The service department will document the need for repair/replacement and arrange such. Shipping costs from the customer to RainWise are borne by the customer, RainWise will cover return shipment. It is the customer's responsibility to see that the unit is properly packed, preferably in the original box, because damage occurring during return shipment is not covered by this warranty.

NOTE: No other warranty, written or oral, is authorized by RainWise, Inc. This warranty gives you specific legal rights, and you may also have other rights, which vary from state to state. Some states do not allow the exclusion of limitation of incidental or consequential damages, so the above exclusion and limitations may not apply to you.