Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

Issued to:

SMA Solar Technology AG Sonnenallee 1 34266 Niestetal GERMANY

This is to certify that representative samples of

STATIC INVERTERS, CONVERTERS AND ACCESSORIES FOR USE IN INDEPENDENT POWER SYSTEMS

Permanently-connected, utility Interactive, 3-phase inverter, Models: SHP 125 US-21, SHP 150 US-21, SHP 165 US-21, SHP 172 US-21 and SHP FLEX US-21. (which are intended for DC input from photovoltaic modules)

Have been investigated by UL in accordance with the Standard(s) indicated on this Certificate.

Barnelly

Bruce Mahrenholz, Director North American Certification Program

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

Standard(s) for Safety:

UL1741 Standard for Safety for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources.

UL 62109-1, Safety of power converters for use in photovoltaic power systems – Part 1: General requirements

IEEE 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.

IEEE 1547.1, IEEE Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.

CSA C22.2 No. 62109-1 Safety of power converters for use in photovoltaic power systems - Part 1: General requirements.

CSA C22.2 No. 62109-2 Safety of power converters for use in photovoltaic power systems - Part 2: Particular requirements for inverters.

Additional Information:

See the UL Online Certifications Directory at <u>www.ul.com/database</u> for additional information

Only those products bearing the UL Certification Mark should be considered as being covered by UL's Certification and Follow-Up Service.

The UL Recognized Component Mark generally consists of the manufacturer's identification and catalog number, model number or other product designation as specified under "Marking" for the particular Recognition as published in the appropriate UL Directory. As a supplementary means of identifying products that have been produced under UL's Component Recognition Program, UL's Recognized Component Mark: **N**, may be used in conjunction with the required Recognized Marks. The Recognized Component Mark is required when specified in the UL Directory preceding the recognitions or under "Markings" for the individual recognitions.

Bamally

Bruce Mahrenholz, Director North American Certification Program

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

Recognized components are incomplete in certain constructional features or restricted in performance capabilities and are intended for use as components of complete equipment submitted for investigation rather than for direct separate installation in the field. The final acceptance of the component is dependent upon its installation and use in complete equipment submitted to UL LLC.

Look for the UL Certification Mark on the product.

This is to certify that representative samples of the product as specified on this certificate were tested according to the current UL requirements.

Permanently-connected, Grid Support Utility Interactive inverters.

This description covers the SMA Solar Technology AG Model: SHP 125 US-21, SHP 150 US-21, SHP 165 US-21, SHP 172 US-21 and SHP FLEX US-21. (which are intended for DC input from photovoltaic modules) inverters.

The Certificate is valid for the HP-Version V03.15.22 (FPGA V3.08.05.R) and V03.16.22 (FPGA V5.03.00.R).

USL - Evaluated to the requirements of the UL Standard for Safety of power converters for use in photovoltaic power systems – Part 1: General requirements, UL 62109-1 First Edition, Dated July 18, 2014.

Additionally evaluated to the requirements in UL 1741 Supplement SA (Second Edition, dated January 28, 2010, and revision dated February 15, 2018)– Grid Support Utility Interactive Inverters and Converters, Second Edition, dated September 7, 2016, which also fulfills the Source Requirement Documents of California Public Utilities Commission Rule 21 for grid support utility interactive inverters: the Generating Facility Interconnections of PG&E (Pacific Gas and Electric Company, Cal. P.U.C. Sheet No. 36812-E), SCE (Southern California Edison, Cal. PUC Sheet No. 60550-E) and SDG&E (San Diego Gas & Electric Company, Cal. P.U.C. Sheet No. 28143-E) and HECO SRD-UL-1741-SA-V1.1, 2017-09-22.

Additionally evaluated to the requirements in IEEE 1547 INTERCONNECTING DISTRIBUTED RESOURCES WITH ELECTRIC POWER SYSTEMS- Edition 1 - Revision Date 2014/05/16 and IEEE 1547.1 IEEE STANDARD CONFORMANCE TEST PROCEDURES FOR EQUIPMENT INTERCONNECTING DISTRIBUTED RESOURCES WITH ELECTRIC POWER SYSTEMS - Edition 1 - Revision Date 2015/03/26

Additionally evaluated to the Certification Requirement Decision dated October 22, 2019, Supplement SA sections SA17 and SA18 Subject: Grid Support Utility Interactive Interoperability Optional Functions: Prevent Enter Service and Limit Active Power (CA Rule 21, Phase 3, functions 2 and 3).

CNL - Additionally evaluated to CSA C22.2 NO. 62109-1 SAFETY OF POWER CONVERTERS FOR USE IN PHOTOVOLTAIC POWER SYSTEMS - PART 1: GENERAL REQUIREMENTS - Edition 1 - Issue Date 2016/07/01 and CSA C22.2 NO. 62109-2 SAFETY OF POWER CONVERTERS FOR

Bathly

Bruce Mahrenholz, Director North American Certification Program

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

USE IN PHOTOVOLTAIC POWER SYSTEMS - PART 2: PARTICULAR REQUIREMENTS FOR INVERTERS- Edition 1 - Issue Date 2016/07/01

The following is valid for models : SHP 125 US-21, SHP 150 US-21, SHP 165 US-21, SHP 172 US-21 and SHP FLEX US-21 with Firmware Processor Version HP-Version V03.15.22 (FPGA V3.08.05.R) and V03.16.22 (FPGA V5.03.00.R).

Additionally Evaluated to the requirements of the Standard for Safety for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741, Third Edition, dated September 28, 2021. Including the requirements in UL 1741 Supplement B (SB).

IEEE 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.

IEEE 1547.1, IEEE Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.

IEEE 1547-2018 IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces

Barklig

Bruce Mahrenholz, Director North American Certification Program

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

Evaluated to the requirements of the Standard for Safety for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741, Third Edition, dated September 28, 2021. Including the requirements in UL 1741 Supplement B (SB).

IEEE 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.

IEEE 1547.1, IEEE Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.

IEEE 1547-2018 IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces

IEEE 1547.1-2020 IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Energy Resources with Electric Power Systems and Associated Interfaces

This description covers the SMA Solar Technology AG Models STP 33-US-41, STP 50-US-41, STP 62-US-41 inverters.

USL - Evaluated to the requirements of the Standard for Safety for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741,

Products covered by this certificate provide functionality in compliance with UL 1741Supplement A (SA) when used in a UL Listed end product which has been evaluated by UL for its intended purpose.

Compliance testing was conducted on samples of the products according to the test methods in UL 1741 with compliant results, and product ratings were reviewed for fulfillment of the requirements in the following SRDs:

Certified functions. Cross Reference table – UL 1741 SA to SRD	Source Requirement Document(s)	UL 1741 SA Test Section	Comparable IEEE 1547.1-2020 and UL1741 SB Test Section	Report Date
ANTI-ISLANDING	Electric Rule	SA 8		2019-
PROTECTION	No. 21	\times \times >	$\langle \times \times \rangle$	03-28
- UNINTENTIONAL ISLANDING	Hh.1a	U _L)(U _L)(U	5.10.2)(U _L)(U _L)
WITH GRID SUPPORT				
FUNCTIONS				
ENABLED		ULXULXU		XUIXUI)
LOW/HIGH	Electric Rule	SA 9	544547	2019-
VOLTAGE	No. 21 Table		5.4.4, 5.4.7	03-28

See also Appendix A for UL 1741Supplement A (SA)

Bruce Mahrenholz, Director North American Certification Program

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

RIDETHROUGH	Hh.1	JL)(UL)	(U_{1})(U_{1})(U_{1})(U_{1})	L)(UL)(UL)
LOW/HIGH	Electric Rule	SA10		2019-
FREQUENCY	No. 21 Table		5.5.3, 5.5.4	03-28
RIDETHROUGH	Hh.2			
RAMP RATES	Electric Rule	UL		2019-
	No. 21	1741	N/A	03-28
	Hh.2k	SA11	(Ui X Ui X Ui	i Mui Xui X
RECONNECT	Electric Rule	UL		2019-
BY "SOFT	No. 21	1741	5.6	03-28
START"	Hh.2k	SA11	(11. VII. VII.	. MIL MIL V
SPECIFIED	Electric Rule	UL		2019-
POWER	No. 21	1741	5.14.3	03-28
FACTOR	Hh.2i	SA12	(n.Mn.Mn.	Mit. Mit. M
DYNAMIC VOLT/VAR	Electric Rule	UL	יואטעאש	2019-
OPERATIONS	No. 21	1741	5.14.4	03-28
	Hh.2J	SA13		
FREQUENCYWATT	Electric Rule	UL		2019-
	No. 21	1741	5.15.2	03-28
	Hh.2.I	SA14	<u>a a a</u>	
VOLT-WATT	Electric Rule	UL		2019-
	No. 21	1741	5.14.9	03-28
	Hh.2.m	SA15	\times \times \times	$\times \times \times$
VII. VII. VII.	Electric Rule No. 21	UL	11. VII. VII	2019-
DISABLE PERMIT SERVICE		1741	5.6	
	Hh.8.a	SA 17		12-16
	Electric Rule No. 21	UL	$(n \setminus n \setminus n)$	2019-
LIMIT ACTIVE POWER	Hh.8.a	1741	5.13	12-16
	ПП.0.0	SA 18		12-10

For the purpose of Grid Support Interactive evaluations, this table provides options to use tests from either the UL 1741 SA or IEEE 1547.1 2020 and UL1741SB.

a IEEE 1547-2018 and IEEE 1547.1-2020 do not have a requirement for, or test equivalent to, the UL 1741 SA Normal Ramp Rate which is presently a local requirement per California Rule 21 and/or Hawaii 14H which both require compliance with the Normal Ramp Rate test of SA11.2.

Testing conducted to the requirements of UL 1741 SA corresponds to the minimum requirements for CA Rule 21, 2015. Testing conducted to the requirements of UL 1741 SB corresponds to the minimum requirements for CA Rule 21, 2020 (Including applicable requirements from AL 4032-E (SDGE), AL 4824-E-A (SCE), AL 6635-E (PG&E)). An enumeration of functions tested, including complete ratings, and available certified settings for the Grid Support functions, are recorded in

Bamples

Bruce Mahrenholz, Director North American Certification Program

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

the appendix to this document. Test data and detailed results of compliance testing are retained in the complete UL Report for this product.

See also Appendix B: Grid Support Utility Interactive Inverter Worksheet

	Grid Support Function	Source Requirement Document(s)	Test Standard(s) and Section(s)	Comparable IEEE 1547.1-2020 and UL1741 SB Test Section	NRTL Certified Date
	LOW/HIGH VOLTAGE RIDE- THROUGH	SRD 14H V1.1: Part II.C. Table 4 HECO SRD V2.0	UL 1741 SA 9	5.4.4, 5.4.7	2018-11-08
	LOW/HIGH FREQUENCY RIDE- THROUGH	SRD 14H V1.1: Part II.D.1 Table 5 HECO SRD V2.0	UL 1741 SA 10	5.5.3, 5.5.4	2018-11-08
	RAMP RATES	SRD 14H V1.1: Part II.G.1 HECO SRD V2.0	UL 1741 SA 11.2	N/A	2018-11-08
	RECONNECT BY "SOFT START"	SRD 14H V1.1: Part II.G.2 HECO SRD V2.0	UL 1741 SA 11.4	5.6	2018-11-08
	SPECIFIED POWER FACTOR	SRD 14H V1.1: Part II.A.1 HECO SRD V2.0	UL 1741 SA 12	5.14.3	2018-11-08
	DYNAMIC VOLT/VAR OPERATIONS	SRD 14H V1.1: Part II.A.2 Table 2, Figure 2 HECO SRD V2.0	UL 1741 SA 13	5.14.4	2018-11-08
ŀ	FREQUENCY-WATT	SRD 14H V1.1: Part	UL 1741 SA 14	5.15.2	2018-11-08

K a Mally

Bruce Mahrenholz, Director North American Certification Program UL LLC

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

1)(U1)(U1)(II.F Table 7	XU1XU	i ((Ui)((U	1 XU1 XU1
	HECO SRD V2.0			
VOLT-WATT	SRD 14H V1.1: Part II.B Table 3, Figure 3	UL 1741 SA 15	5.14.9	2018-11-08
	HECO SRD V2.0	YUi YU	i Mui Mu	n MUn MUn
Anti-Islanding	N/A	UL 1741 SA8	5.10.2	2018-11-08

(+) - Self Certification

Bampleg

Bruce Mahrenholz, Director North American Certification Program

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

Detailed Testing Summary	Test Standard(s) and Section(s)	Comparable IEEE 1547.1- 2020 and UL1741 SB Test Section	Fixed / Adjustable	Pass / Fail
UNINTENTIONAL ISLANDING WITH GRID SUPPORT FUNCTIONS ENABLED	UL 1741 SA 8	5.10.2	Adjustable	Pass
HIGH VOLTAGE RIDE-THROUGH DURATION	UL 1741 SA 9.1	5.4.7	Adjustable	Pass
HIGH VOLTAGE RIDE-THROUGH / MUST TRIP MAGNITUDES	UL 1741 SA 9.2	5.4.7	Adjustable	Pass
HIGH VOLTAGE MUST TRIP CLEARING TIMES	UL 1741 SA 9.2	5.4.7	Adjustable	Pass
LOW VOLTAGE RIDE-THROUGH DURATION	UL 1741 SA 9.1	5.4.4	Adjustable	Pass
LOW VOLTAGE RIDE-THROUGH / MUST TRIP MAGNITUDES	UL 1741 SA 9.2	5.4.4	Adjustable	Pass
LOW VOLTAGE MUST TRIP CLEARING TIMES	UL 1741 SA 9.2	5.4.4	Adjustable	Pass
HIGH FREQUENCY RIDE-THROUGH DURATION	UL 1741 SA10.1	5.5.4	Adjustable	Pass
HIGH FREQUENCY RIDE-THROUGH / MUST TRIP MAGNITUDES	UL 1741 SA10.2	5.5.4	Adjustable	Pass
HIGH FREQUENCY MUST TRIP CLEARING TIMES	UL 1741 SA10.2	5.5.4	Adjustable	Pass
LOW FREQUENCY RIDE-THROUGH DURATION	UL 1741 SA10.1	5.5.3	Adjustable	Pass
LOW FREQUENCY RIDE-THROUGH / MUST TRIP MAGNITUDES	UL 1741 SA10.2	5.5.3	Adjustable	Pass
LOW FREQUENCY MUST TRIP CLEARING TIMES	UL 1741 SA10.2	5.5.3	Adjustable	Pass
NORMAL RAMP RATE	UL 1741 SA 11.2	N/A	Adjustable	Pass
"SOFT START" RAMP RATE	UL 1741 SA 11.4	5.6	Adjustable	Pass
SPECIFIED POWER FACTOR	UL 1741 SA 12	5.14.3	Adjustable	Pass
VOLT/VAR MODE (Q(V))	UL 1741 SA 13	5.14.4	Adjustable	Pass
FREQUENCY-WATT (FW)	UL 1741 SA 14	5.15.2	Adjustable	Pass

Barnally

Bruce Mahrenholz, Director North American Certification Program UL LLC

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

VOLT-WATT (VW)	UL 1741 SA 15	5.14.9	Adjustable	Pass
DISABLE PERMIT SERVICE	UL 1741 SA 17	5.6	Adjustable	Pass
LIMIT ACTIVE POWER	UL 1741 SA 18	5.13	Adjustable	Pass

Voltage regions equivalencies between UL1741SA and IEEE1547.1-2020/UL1741SB

UL1741 SA Boundary	IEEE 1547.1-2020 Shall Trip
High Voltage 3 (HV3)	Not applicable
High Voltage 2 (HV2)	Over Voltage 2 (OV2)
High Voltage 1 (HV1)	Over Voltage 1 (OV1)
Low Voltage 1 (LV1)	Under Voltage 1 (UV1)
Low Voltage 2 (LV2)	Under Voltage 2 (UV2)
Low Voltage 3 (LV3)	Not applicable
Low Voltage 4 (LV4)	Not applicable

requency regions comparison between UL1741SA and IEEE1547.1-2020:

UL1741 SA Boundary	IEEE 1547.1-2020 Shall Trip
High Frequency 3 (HF3)	Not applicable
High Frequency 2 (HF2)	Over Frequency 2 (OF2)
High Frequency 1 (HF1)	Over Frequency 1 (OF1)
Low Frequency 1 (LF1)	Under Frequency 1 (UF1)
Low Frequency 2 (LF2)	Under Frequency 2 (UF2)
Low Frequency 3 (LF3)	Not applicable

Bamples

Bruce Mahrenholz, Director North American Certification Program

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

Inverter Firmware Ve	ersion:	人口人口人
UL 1998 Date		Version/Revision
Compliant	2022-09-07	3.15.22 (FPGA V3.08.05.R)
Compliant	2022-09-07	3.16.22 (FPGA V5.03.00.R)

Inverter Ratings - Output	All models, with individual differences as shown
Output phase configuration	3-Phase Delta
Nominal (line to line) output voltage V ac	480 / 600 / 630 / 660
Operating voltage range V ac	422 - 759
Line Synchronization Characteristics	Method 2
Normal out frequency Hz	60
Rated output current (A ac)	151
Rated output power, (kW)	125 / 150 / 165 / 172
Max. Branch Circuit overcurrent protection (A ac)	250
Maximum Air Ambient (°C)	60

Other ratings:	\times \times \times \times
Max. utility backfeed current to PV input (A)	0A
Line Synchronization Characteristics / In-rush current	Method 2
Limits of accuracy of voltage measurement	2 %
Limits of accuracy of frequency measurement	+/- 0.1 Hz
Manufacturers stated accuracy of time response for voltage trips	+/- 0.1 % at nominal trip time
Manufacturers stated accuracy of time response for frequency trips	+/- 0.1 % at nominal trip time
*Enclosure Ratings	4x
<u>(UD(UD(UD(UD(UD(UD)</u>	(4)(4)(4)(4)(4)
INTERCONNECTION INTEGRITY TEST CATEGORIES:	
C62.42.2 Ring Wave Surge Category	B / 5.87 kV / 0.5 kA
C62.42.2 Combination Wave Surge Category	B / 6.27 kV / 3.06 kA
C37.90.1 RF Immunity - compliance	Yes

Bamples

Bruce Mahrenholz, Director North American Certification Program UL LLC

C37.90.2 Communication circuit - compliance

Yes

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

Magnitude and time Limits times:	- Utility interc	onnection volta	ge magnitude	limits, Ride Thr	ough time limi	ts and trip	
Nominal voltage	<u>)(</u>	/ Single/Split phase / Single/Split phase					
UL 1741 SA9:		itudes ominal)	Γhrough nds) (+)	Must Trip (Seconds)			
Boundary designation (++)	Min	Max	Min	Max	Min	Max	
HV3	79.42	120.00	1	30	0.1	59	
HV2	79.42	120	1	30	0.1	59	
HV1	79.42	110	1	-30	0.1	60	
LV1	37.36	100	1	- 30	0.1	60	
LV2	37.36	100	1 _/	30	0.1	60	
LV3	37.36	100	1	30	0.1	60	

Magnitude and time Limits - Utility interconnection Frequency magnitude limits, Ride Through time limits and trip times:

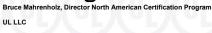
Nominal Frequency	60 Hz					
UL 1741 SA10:	Magnitudes (Frequency)		Ride Through (Seconds) (+)		Must Trip (Seconds)	
Boundary designation	Min	Max	Min	Max	Min	Max
HF3		$\times \cdot \times$		X·X	\sim	X
HF2	50.0	66.0	10	999.0	0.1	1000.0
HF1	50.0	66.0	10	999.0	0.1	1000.0
LF1	44.0	60.0	10	999.0	0.1	1000.0
LF2	44.0	60.0	10	999.0	0.1	1000.0
LF3	人・レ人	L'L	パリ		「人」「」	

Bamely

Bruce Mahrenholz, Director North American Certification Program

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

Frequency-Droop Category III:


Nominal Frequency	60Hz			
Parameter	Default Settings	Ranges of allowable Settings		
	MIL VIL VIL I	Min	Max	
db _{OF} , db _{UF} (Hz)	0.036	0.017	1.0	
k _{of} , k _{uf}	0.05	0.02	0.05	
Tresponse (small signal) (S)	5.0	0.20	10.0	

SA11 Ramp Rate test ratings (RR)	1)(U1)(U1)(U1)	<u>) (UL) (UL) (U</u>
Minimum normal ramp-up rate	0.2	%Irated/SEC
Maximum normal ramp-up rate	20	%Irated/SEC
Minimum soft start ramp-up rate	0.1	%Irated /SEC
Maximum soft start ramp-up rate	20	%Irated /SEC

SA12 SPF Specified Power Factor (INV3)	$1 \sqrt{n} \sqrt{n} \sqrt{n} \sqrt{n}$
Minimum Inductive (Underexcited) Power Factor (<0)	-0.8
Minimum Capacitive (Overexcited) Power Factor (>0)	+0.8

SA13 Volt/Var Mode (VV) extent of curve rang	e settings			
		Qmax Values - Maximums	Qmin Values - Minimums	Units
Reactive power production setting	Q1	60	15	%VAR
Reactive power absorption setting at the left edge of the deadband	Q ₂			%VAR
Reactive power absorption setting at the right edge of the deadband	Q ₃	0	0	%VAR
Reactive power absorption setting	Q4	-60	-15	%VAR

Bamely

U

Certificate Number Report Reference Issue Date 20221130-E210376 E210376-20221130 2022-11-30

Functional in the following priority modes: [] active power priority [X] reactive power priority (RPP)

		Maximum	Minimum	Units
The voltage at Q_1	V ₁	97.83	92.00	%Vnom
The voltage at Q ₂	V ₂	100.00	96.00	%Vnom
The voltage at Q₃	V ₃	104.00	100.00	%Vnom
The voltage at Q₄	V ₄	108.00	102.17	%Vnom

Settings		Frequency		Power level	
Low end of the adjustment range of the start of the curtailment function	F _{start_min}	60.1	100 %	%Watts	
High end of the adjustment range of the start of the curtailment function	F _{start_max}	62.0	100 %	%Watts	
Low end of the adjustment range of the endpoint of the curtailment function	F _{stop_min}	60.78	0 %	%Watts	
High end of the adjustment range of the endpoint of the curtailment function	F _{stop_max}	65.5	0 %	%Watts	

SA15 Volt-Watt (VW) extent of curve range settings						
Settings	V	olts	Pow	er level		
Low end of the adjustment range of the start of the curtailment function	V _{start_min}	103 %	100%	%Watts		
High end of the adjustment range of the start of the curtailment function	V_{start_max}	103 %	100 %	%Watts		
Low end of the adjustment range of the endpoint of the curtailment function	V _{stop_min}	106%	0 %	%Watts		
High end of the adjustment range of the endpoint of the curtailment function	V_{stop_max}	110 %	0 %	%Watts		

Bamely

Bruce Mahrenholz, Director North American Certification Program

